Кодирование информации на компьютере

Информатика в школе
Разделы

  • Кодирование информации без компьютеров
  • Системы кодирования числовой информации
  • Двоичная система счисления
  • Перевод чисел из одной системы счисления в другую
  • Кодирование информации на компьютере
  • Вопросы и упражнения
  • Презентация "Кодирование текстовой информации"
  • Презентация "Кодирование звуковой информации"
  •     Мы познакомились с системами счисления - способами кодирования чисел. Числа дают информацию о количестве предметов. Эта информация должна быть закодирована, представлена в какой-то системе счисления. Какой из известных способов выбрать, зависит от решаемой задачи.
        До недавнего времени на компьютерах в основном обрабатывалась числовая и текстовая информация. Но большую часть информации о внешнем мире человек получает в виде изображения и звука. При этом более важным оказывается изображение. Помните пословицу: “Лучше один раз увидеть, чем сто раз услышать”. Поэтому сегодня компьютеры начинают всё активнее работать с изображением и звуком. Способы кодирования такой информации будут обязательно нами рассмотрены.

    Двоичное кодирование числовой и текстовой информации.

        Любая информация кодируется в ЭВМ с помощью последовательностей двух цифр - 0 и 1. ЭВМ хранит и обрабатывает информацию в виде комбинации электрических сигналов: напряжение 0.4В-0.6В соответствует логическому нулю, а напряжение 2.4В-2.7В - логической единице. Последовательности из 0 и 1 называются двоичными кодами, а цифры 0 и 1 - битами (двоичными разрядами). Такое кодирование информации на компьютере называется двоичным кодированием. Таким образом, двоичное кодирование - это кодирование с минимально возможным числом элементарных символов, кодирование самыми простыми средствами. Тем оно и замечательно с теоретической точки зрения.
        Инженеров двоичное кодирование информации привлекает тем, что легко реализуется технически. Электронные схемы для обработки двоичных кодов должны находиться только в одном из двух состояний: есть сигнал/нет сигнала или высокое напряжение/низкое напряжение.
        ЭВМ в своей работе оперируют действительными и целыми числами, представленными в виде двух, четырёх, восьми и даже десяти байт. Для представления знака числа при счёте используется дополнительный знаковый разряд, который обычно располагается перед числовыми разрядами. Для положительных чисел значение знакового разряда равно 0, а для отрицательных чисел - 1. Для записи внутреннего представления целого отрицательного числа (-N) необходимо:
         1) получить дополнительный код числа N заменой 0 на 1 и 1 на 0;
         2) к полученному числу прибавить 1.

        Так как одного байта для представления этого числа недостаточно, оно представлено в виде 2 байт или 16 бит, его дополнительный код: 1111101111000101, следовательно, -1082=1111101111000110.
        Если бы ПК мог работать только с одиночными байтами, пользы от него было бы немного. Реально ПК работает с числами, которые записываются двумя, четырьмя, восемью и даже десятью байтами.
        Начиная с конца 60-х годов компьютеры всё больше стали использоваться для обработки текстовой информации. Для представления текстовой информации обычно используется 256 различных символов, например большие и малые буквы латинского алфавита, цифры, знаки препинания и т.д. В большинстве современных ЭВМ каждому символу соответствует последовательность из восьми нулей и единиц, называемая байтом.
        Байт – это восьмиразрядная комбинация нулей и единиц.
        При кодировании информации в этих электронно-вычислительных машинах используют 256 разных последовательностей из 8 нулей и единиц, что позволяет закодировать 256 символов. Например большая русская буква «М» имеет код 11101101, буква «И» - код 11101001, буква «Р» - код 11110010. Таким образом, слово «МИР» кодируется последовательностью из 24 бит или 3 байт: 111011011110100111110010.
        Количество бит в сообщении называется информационным объёмом сообщения.

    Это интересно!

        Первоначально в ЭВМ использовался лишь латинский алфавит. В нём 26 букв. Так что для обозначения каждой хватило бы пяти импульсов (битов). Но в тексте есть знаки препинания, десятичные цифры и др. Поэтому в первых англоязычных компьютерах байт - машинный слог - включал шесть битов. Затем семь - не только чтобы отличать большие буквы от малых, но и для увеличения числа кодов управления принтерами, сигнальными лампочками и прочим оборудованием. В 1964 году появились мощные IBM-360, в которых окончательно байт стал равен восьми битам. Последний восьмой бит был необходим для символов псевдографики.
         Присвоение символу конкретного двоичного кода - это вопрос соглашения, которое фиксируется в кодовой таблице. К сожалению, существует пять различных кодировок русских букв, поэтому тексты, созданные в одной кодировке, не будут правильно отражаться в другой.
        Хронологически одним из первых стандартов кодирования русских букв на компьютерах был КОИ8 («Код обмена информацией, 8 битный»). Наиболее распространённая кодировка - это стандартная кириллическая кодировка Microsoft Windows, обозначаемая сокращением СР1251 («СР» означает «Code Page» или «кодовая страница»). Фирма Apple разработала для компьютеров Macintosh собственную кодировку русских букв (Мас). Международная организация по стандартизации (International Standards Organization, ISO) утвердила в качестве стандарта для русского языка кодировку ISO 8859-5. Наконец, появился новый международный стандарт Unicode, который отводит на каждый символ не один байт, а два, и поэтому с его помощью можно закодировать не 256 символов, а целых 65536.
        Все эти кодировки продолжают кодовую таблицу стандарта ASCII (Американский стандартный код для информационного обмена), кодирующую 128 символов.

        Таблица символов ASCII:

    код символ код символ код символ код символ код символ код символ
    32 Пробел 48 . 64 @ 80 P 96 ' 112 p
    33 ! 49 0 65 A 81 Q 97 a 113 q
    34 " 50 1 66 B 82 R 98 b 114 r
    35 # 51 2 67 C 83 S 99 c 115 s
    36 $ 52 3 68 D 84 T 100 d 116 t
    37 % 53 4 69 E 85 U 101 e 117 u
    38 & 54 5 70 F 86 V 102 f 118 v
    39 ' 55 6 71 G 87 W 103 g 119 w
    40 ( 56 7 72 H 88 X 104 h 120 x
    41 ) 57 8 73 I 89 Y 105 i 121 y
    42 * 58 9 74 J 90 Z 106 j 122 z
    43 + 59 : 75 K 91 [ 107 k 123 {
    44 , 60 ; 76 L 92 \ 108 l 124 |
    45 - 61 < 77 M 93 ] 109 m 125 }
    46 . 62 > 78 N 94 ^ 110 n 126 ~
    47 / 63 ? 79 O 95 _ 111 o 127 DEL

    в начало

        Двоичное кодирование текста происходит следующим образом: при нажатии на клавишу в компьютер передаётся определённая последовательность электрических импульсов, причём каждому символу соответствует своя последовательность электрических импульсов (нулей и единиц на машинном языке). Программа драйвер клавиатуры и экрана по кодовой таблице определяет символ и создаёт его изображение на экране. Таким образом, тексты и числа хранятся в памяти компьютера в двоичном коде и программным способом преобразуются в изображения на экране.

    Двоичное кодирование графической информации.

        С 80-х годов бурно развивается технология обработки на компьютере графической информации. Компьютерная графика широко используется в компьютерном моделировании в научных исследованиях, компьютерных тренажёрах, компьютерной анимации, деловой графике, играх и т.д.
        Графическая информация на экране дисплея представляется в виде изображения, которое формируется из точек (пикселей). Всмотритесь в газетную фотографию, и вы увидите, что она тоже состоит из мельчайших точек. Если это только чёрные и белые точки, то каждую из них можно закодировать 1 битом. Но если на фотографии оттенки, то два бита позволяет закодировать 4 оттенка точек: 00 - белый цвет, 01 - светло-серый, 10 - тёмно-серый, 11 - чёрный. Три бита позволяют закодировать 8 оттенков и т.д.
        Количество бит, необходимое для кодирования одного оттенка цвета, называется глубиной цвета.

         В современных компьютерах разрешающая способность (количество точек на экране), а также количество цветов зависит от видеоадаптера и может изменяться программно.
        Цветные изображения могут иметь различные режимы: 16 цветов, 256 цветов, 65536 цветов (high color), 16777216 цветов (true color). На одну точку для режима high color необходимо 16 бит или 2 байта.
        Наиболее распространённой разрешающей способностью экрана является разрешение 800 на 600 точек, т.е. 480000 точек. Рассчитаем необходимый для режима high color объём видеопамяти: 2 байт *480000=960000 байт.
        Для измерения объёма информации используются и более крупные единицы:

        Следовательно, 960000 байт приблизительно равно 937,5 Кбайт. Если человек говорит по восемь часов в день без перерыва, то за 70 лет жизни он наговорит около 10 гигабайт информации (это 5 миллионов страниц - стопка бумаги высотой 500 метров).
        Скорость передачи информации - это количество битов, передаваемых в 1 секунду. Скорость передачи 1 бит в 1 секунду называется 1 бод.

        В видеопамяти компьютера хранится битовая карта, являющаяся двоичным кодом изображения, откуда она считывается процессором (не реже 50 раз в секунду) и отображается на экран.

    Двоичное кодирование звуковой информации.

        С начала 90-х годов персональные компьютеры получили возможность работать со звуковой информацией. Каждый компьютер, имеющий звуковую плату, может сохранять в виде файлов (файл - это определённое количество информации, хранящееся на диске и имеющее имя) и воспроизводить звуковую информацию. С помощью специальных программных средств (редакторов аудио файлов) открываются широкие возможности по созданию, редактированию и прослушиванию звуковых файлов. Создаются программы распознавания речи, и появляется возможность управления компьютером голосом.
        Именно звуковая плата (карта) преобразует аналоговый сигнал в дискретную фонограмму и наоборот, «оцифрованный» звук – в аналоговый (непрерывный) сигнал, который поступает на вход динамика.

         При двоичном кодировании аналогового звукового сигнала непрерывный сигнал дискретизируется, т.е. заменяется серией его отдельных выборок - отсчётов. Качество двоичного кодирования зависит от двух параметров: количества дискретных уровней сигнала и количества выборок в секунду. Количество выборок или частота дискретизации в аудиоадаптерах бывает различной: 11 кГц, 22 кГц, 44,1 кГц и др. Если количество уровней равно 65536, то на один звуковой сигнал рассчитано 16 бит (216). 16-разрядный аудиоадаптер точнее кодирует и воспроизводит звук, чем 8-разрядный.
        Количество бит, необходимое для кодирования одного уровня звука, называется глубиной звука.
        Объём моноаудиофайла (в байтах) определяется по формуле:

        При стереофоническом звучании объём аудиофайла удваивается, при квадрофоническом звучании – учетверяется.
         По мере усложнения программ и увеличения их функций, а также появления мультимедиа-приложений, растёт функциональный объём программ и данных. Если в середине 80-х годов обычный объём программ и данных составлял десятки и лишь иногда сотни килобайт, то в середине 90-х годов он стал составлять десятки мегабайт. Соответственно растёт объём оперативной памяти.


    в начало

    2007 © Copyright by L.Gazizova (E-mail: leniza@hotbox.ru), WebMasters N.Woit, R.Akzamutdinov, Y.Bibikova

    Источник информации



    Hosted by uCoz